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ABSTRACT. The groundwork for a theory of quadratic identities involving the 
classical triple and quintuple products is layed. The approach is through the 
study and use of affine maps that act on indexing lattices associated with the 
terms (double sums) in the given identity. The terms of the identity are found 
to be connected by the invariant of a ternary quadratic form. 

1. INTRODUCTION 

In this paper we begin to lay the groundwork of a theory of identities whose 
terms have the form x' times TiT , TiQj, and QiQj. Here the letters "Ti, Tj" and 
"Qi, Qj" denote respectively one of the four T-functions (derived from the Jacobi 
triple product expansion) 

(1.1) T26+, (k 1; x) = T26+, (k, ) = _1 n(2+l+nk2 

-00 

and one of the four Q-functions (derived from the quintuple product expansion) 

Q26+E(k, 1; x) = Q26+E (k, 1) 

(1.2) d Zf (_)6n(n+1) +.n n(3?+l) k (-3nl - (-1)6+EX(3n+1)1) 

-00 

where 6,E E {O, 1}. For simplicity, we write T2, TQ, and Q2 for TiTj, TiQj, and 
QiQj respectively, and refer to identities with terms of this kind as "quadratic" 
identities. We also write T(k, 1) for To(k, 1). 

The main concerns of this theory are the construction and classification of iden- 
tities that are quadratic in T and Q and the development of a general method for 
proving them. One of the goals of the theory is a complete classification of such 
identities and the discovery of multi-parameter formulas from which the identities 
in the classes can be derived. In [2, Theorem 1] we gave a formula of sufficient gen- 
erality to establish the identities of that paper. It is not as yet clear, however, just 
what role that particular formula will play in the general classification problem. 
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In this work, we take as our goal the construction of a proof of an identity we 
have already given two proofs of, viz. 

(1.3) T(2, 27) T(3 23) - x2T(21, 21) T(3 , 2) = 2T1 (21, 7) T1 (3, 1). 

Our purpose in giving a third proof of (1.3) is not that (1.3) is of any particular 
interest beyond its original use in proving a certain (mod 2) congruence in [1], but 
rather that it can be used to explicate the methods and ideas we wish to present 
here. 

The two earlier proofs of (1.3) employed a general expansion formula to 
express the identity as a T2 equation all of whose terms have the form 
x` T(k1, 11n) T(k2, 12n), where the parameters k1 and k2 are the same for each 
term. Such equations are called "balanced" at the particular pair (kl,k2). The 
resulting equation, which was balanced at the k-pair (96,672), was then established 
by a summation technique called an "expansion of zero." (See [1] for an explanation 
of these techniques and the relevant terminology.) 

In Section 2 of this paper, we expand (1.3) into a T2 equation with 16 terms on 
a side, balanced at the smallest possible k-pair (24,168). This 32 term identity is 
found to be the sum of four sub-identities, each with four terms on a side. Since 
these four T2 equations are similar, we will develop the ideas of this paper using 
only the first of these as a model, proving all four identities in a uniform way in 
the last section of the paper. 

The initial step toward proving this first identity comes from writing each of its 
eight terms as a doubly-indexed sum: 

(1.4) XeT(ki , 11) T(k2, 12) = E xkli2+k2j2+1li+12j+a 

(i,j)EZ2 

Because each coefficient in such a sum is a 1, the equality between the two sides of 
the identity is an assertion that the powers of x on the two sides are the same, so 
the right side is merely a re-arrangement of the left. Thus, to find a proof of the 
identity is to find its re-arrangement scheme. 

In Section 3 we examine the re-arrangement in the first identity by determining 
which of the four sums on the right contain the powers of x in each of the four sums 
on the left. It becomes clear from this examination that the lattice points (i, j) in 
the plane 22 for a given sum on the left, whose powers of x are in a particular sum 
on the right, lie on a lattice, and the four lattices in one plane, that correspond 
respectively to the four sums on the right, form a partition of that plane. The 
occurrence of such a simple structure as a lattice in the indexing planes permits a 
precise description of the re-arrangement as a collection of 1-1 affine maps between 
the lattices in the four indexing planes on the two sides of the identity. 

Sections 4-6 deal with the general theory used to establish the re-arrangement 
schemes. In Section 4 it is proved that if two lattices in 22 are to be point-wise 
associated, a certain affine map with rational coefficients must generally be used. 

In Section 5, the nature of an affine map that connects two quadratic polynomials 
of the form k, x2 +k2y2 +lx+12y++a is derived. (These quadratics are the exponent 
polynomials in (1.4) whose pair of coefficients (k1, k2) is the same.) In particular, 
it is discovered that the determinant of such a map must be ?1 and the members 
of the family of quadratic exponent polynomials that appear in an identity, whose 
members are linked by such affine maps, are restricted to having coefficients which 
must satisfy a certain invariant. 
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Section 6 contains a synthesis of the analyses in Sections 4 and 5. This synthesis 
shows how to construct affine maps between the members of the family of exponent 
polynomials so as to properly re-arrange the powers of x by point-wise connections 
between the respective lattices in 22. The result of this synthesis is the useful 
Theorem 3, which gives three computable conditions under which identities like 
the four identities under consideration are true. 

The paper ends with Section 7 in which the four identities are proved using 
Theorem 3, but not by just applying this theorem to each of the four identities. 
Instead, Theorem 3 is used to prove a 3-parameter identity (Theorem 4), which 
contains the four identities as special cases. 

2. EXPANDING IDENTITY (1.3) INTO A BALANCED 2 IDENTITY 

In [1, p. 792], we discussed expanding identity (1.3) into an identity balanced at 
(24,168), the smallest possible K-pair one can use for this purpose. (We will use 
capital K and L in this section as in the expansion formula in [1]. In what follows, 
however, we will use small k and I for the coefficients in the exponent polynomials.) 
This pair was not used, however, because the resulting identity could not be proved 
using expansions of zero, the method of proof discussed in that paper. Equation 
(1.3) was therefore established by expanding to the larger k-pair (96,672). In the 
present paper, we will use the minimal K-pair (24,168) to prove the expanded 
identity by a re-arrangement method of proof. 

Before applying the expansion formula, we must use the Backward Program [1, 
p. 790] to determine the possible (k1, k2) pairs and associated parameters [a, b, m] 
that expand to K1 = 24, K2= 168 (or vice versa). The four possibilities (k1, k2) 
and their associated parameters [a, b, m] that were output by program Backward 
are: 

#1: (2213), [3,3,16]; #2: (21,3), [1,1,8]; 

#3: (3,21), [1,7,8]; #4: (21,3), [7,1,8]. 

Since there is only one possibility starting with (21, 3), we expand the two terms 
on the left side of (1.3) using expansion #1. The double term on the RHS of (1.3) 
is expanded as two identical terms, using expansions #2 and #4. Transposing 
negative terms to the other side, and canceling 16 matching terms, we obtain the 
equation 

16 16 

(2.1) ZAi(x) = ZBi(x), 
i=l i=l1 

where the Ai (x) and Bi (x) are listed in Table 1. It is this equation that we must 
prove. 

If we next compare the powers of x that appear in the A and B series on the 
two sides of (2.1), we discover the surprising fact that (2.1) is actually the sum of 
four simpler identities, each with four A terms on the left and four B terms on the 
right. These sub-identities are listed in Table 2. 

That none of these four sub-identities can be split further is due to the fact that 
there is no other dependency among the A and B power series. We describe this 
characteristic of an identity by the following terminology. 

Definition 1. A balanced T2 identity is called reducible if it can be split into the 
sum of two or more balanced T2 identities. Otherwise, it is called irreducible. 
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TABLE 1. Ai and Bi in equation (2.1). 

Ai(x) = xRiT(24, 1hi) T(168, 12i) Bi(x) = XciT(24, hli) T(168, 12i) 

aei 11i 12i ao i 11i 12i 

1 0 1 21 1 0 6 14 
2 2 2 42 2 2 9 35 
3 3 10 42 3 3 18 14 
4 3 17 21 4 3 3 49 
5 4 14 42 5 4 21 7 
6 7 22 42 6 7 6 70 
7 7 13 63 7 9 9 77 
8 9 19 63 8 10 18 70 
9 16 5 105 9 14 15 91 
10 17 11 105 10 14 .6 98 
11 23 2 126 11 17 18 98 
12 24 10 126 12 25 21 119 
13 25 14 126 13 28 15 133 
14 28 22 126 14 35 6 154 
15 32 7 147 15 38 18 154 
16 37 23 147 16 38 3 161 

TABLE 2. The four sub-identities. 

Identity 1 

# I oe ki 11 k2 12 # ' ki 11 k2 1l 

1 0 24 1 168 21 1 0 24 6 168 14 
7 7 24 13 168 63 6 7 24 6 168 70 
10 17 24 11 168 105 11 17 24 18 168 98 
16 37 24 23 168 147 15 38 24 18 168 154 

Identity 2 (with multiplier x2 canceled) 

# k1 11 k2 12 #T & k 11 k2 1l 
2 0 24 2 168 42 .2 0 24 9 168 35 
3 1 24 10 168 42 4 1 24 3 168 49 
13 23 24 14 168 126. 12 23 24 21 168 119 
14 26 24 22 168 126 13 26 24 15 168 133 

Identity 3 (with multiplier x3 canceled) 

# oe ki 11 k2 12 # & ki 1 k2 1 

4 0 24 17 168 21 3 0 24 18 168 14 
8 6 24 19 168 63 8 7 24 18 168 70 
9 13 24 5 168 105 10 11 24 6 168 98 
15 29 24 7 168 147 14 32 24 6 168 154 

Identity 4 (with multiplier x4 canceled) 

# oe kk 11 k2 12 &' ki 1 k2 12 
5 0 24 14 168 42 5 0 24 21 168 7 
6 3 24 22 168. 42 7 5 24 9 168 77 
11 19 24 2 168 126 9 10 24 15 168 91 
12 20 24 10 168 126 16 34 24 3 168 161 
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3. THE RE-ARRANGEMENT SCHEMES 

In this section we discuss!the idea of the re-arrangement scheme of a balanced T2 
identity. We will explain this idea by examining the scheme of the first identity in 
Table 2 (equation (3.1)), which is essentially the same as the schemes of the other 
three identities in Table 2. This identity is: 

(3.1) Ai(x) + A7 (X)+ Alo(x) + A16 (X)=Bi(x) + B6 (X)+ Bli(x) + B15 (X) 

We begin by writing the eight terms of (3.1) as double sums as in (1.4), so (3.1) 
becomes 

4 4 

(3.2) E E xLr( ij) = E E xRs(i,j) 
r=1 (i,j)CZ2 s=1 (i7j)CE2 

where Lr (i, j) = 24i2 + 168j2 + ?lri + 12rj + Car 
and R (i, j) = 24i2 + 168j2 + 1?li + 

125j + ?e. Here the lir and li5 are respectively 1i and 1' in Identity 1 in Table 2. 
In a few cases we will use the negatives of the values in Table 2, because this gives 
greater regularity in the resulting geometric lattice patterns that underlie the re- 
arrangements. That such a change is permissible is due to the fact that the indices 
i and j run over Z. 

In this form, it is clear that the equality in (3.1) is an assertion that a power 
XLr(ij), evaluated at the point (i, j) in the r'h indexing plane Z2 on the left, will 
be one of the powers xRs( ,J), evaluated at some corresponding point (i', j') in the 
s th indexing plane Z2 on the right. 

It becomes clear after considerable computing that the points (i, j) C Z2 in the 
rth indexing plane, at which XLr(i,j) is a term in the sth sum on the right, lie on an 
affine lattice, and that the corresponding points (i', j') C Z2 lie on an affine lattice 
in the sth indexing plane as well. 

Definition 2. A 2-dimensional, (affine) lattice is a set of points 

?L{f 2 x =:nib,+n2b2+xO, Vni,n2 EZ}, 

where b1, b2, xo C 2 and b1, b2 are linearly independent over Z. 

To illustrate such lattices, consider the first sum on the left and the second sum 
on the right, which have the exponents LI(i,j) = 24i2 + 168j2 - i + 21j and 
R2 (i, j) = 24i2 + 168j2 + 6i - 70j + 7 respectively, with two negative coefficients as 
mentioned after (3.2). 

We find that the lattice for the first sum is 

(3.3) [v] = [n ] ? [O] ? O = 

[- O] [n] ? [1 ], V nl, n2 C Z, 

and the associated lattice for the second sum is 

(3.4) [/t = ni + n2 [1] + [O]=[1 ] n +[O] 

To verify these are corresponding lattices, we note simply that 

(3.5) LI(ni +4n2-1,ni) R2(-ni +3n2-1,ni +n2) 

= 192n 2 + 384n 2 + 192nlrn2- 28n, - 196n2 + 25. 
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Lattices such as those in (3.3) and (3.4) and equations similar to (3.5) can be 
worked out for the other 15 pairs of exponents in Identity 1. It can also be shown 
that the quartfts of lattices in the eight indexing planes that are linked in this way 
by the sixteen 1-1 lattice maps, consititute a partitioning of the 8 indexing planes. 
The other 3 identities in Table 2 can be verified in the same way by finding 48 more 
equations like (3.5). 

Instead of taking this tedious and unrevealing approach, we will pursue the 
present example further and investigate the nature of the direct map that connects 

the points [I,] to [x] To do this, solve (3.4) for [mi] and substitute the result 

into (3.3). This gives the vector equation 

(3.6) [Y] 4[ Y + 4 

The map b, defined by [x,] = ( A [x] ?d, where A = 1 [3 3] and 

d- =-4 [ ], can generally be considered as an affine map between two real planes 

o2, SO that the equality L1 (x, y) = R2 (x', y') holds between these two-variable, real 
polynomials. In general, we call a real, affine map /: R2 R R2 of this kind a global 
map. The map f/ in (3.6) has the special property that it is also a 1-1 map of the 
lattice in (3.3) to the lattice in (3.4). 

Not all global maps from Z2 to 22 send lattices to lattices though. For example, 
the simple translation 

LI (x, y) = R2 (x-2 7' Y+ 24) 

is a global map from L1 to R2, but one that doesn't send any integer point to 
another integer point. 

Global maps with rational coefficients turn out to be crucial to our understanding 
of re-arrangement schemes. They show how the quadratic exponent polynomials 
relate to each other in a balanced identity. Global maps of the right kind also 
allow us to relate quadratic exponent polynomials to the underlying re-arrangement 
lattices. In general, we need to have a simple way to find a global map between a 
pair of lattices in one of the four planes on the two sides of our identity and, vice 
versa, to determine when a global map induces a correspondence between lattices 
in the indexing planes. 

4. RATIONAL MATRICES AND ASSOCIATED LATTICE MAPS 

In this short section we prove a theorem about lattices and affine maps between 
them. The maps between two lattices in Z2 will ordinarily have rational rather 
than integer coefficients. 

Theorem 1 (Lattice Mapping Theorem). (a) Let /: R2 - R2 be a 1-1 affine map 
with rational coefficients. Let K(+b) {x C 2 t(X) C ( }. If K (f) # 0, then 
K (Q) and b (K (+)) are lattices in Z2. (b) Conversely, if L and LI are lattices of 
V2, then there exists a 1-1 affine map with rational coefficients f/: R2 * R2 such 
that K(+b) = L and ?' = +(z). 
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Proof. (a) Let +Q(xi) = Ax + b, where A and b have rational entries. Since K # 0, 
there exist xo, y-o C 2 such that yo = +(xo) = Aio + b. Subtracting, we get 
+(x-) = A(x- xo) + yo. Setting x' = x-xO, we have +b(x`' + xo) =A' ? o. 
Defining 1Q (xi') = +b(x' ?+ o) -0o, we have that 1Q (xi') = Ax/. 

Consider the set K(+i) = {x' C 1(X/) C 22}. If d = LCM of the 

denominators of the entries in A, then [d] and [] are linearly independent vectors 

in K(Qbi), so K(Qbi) contains at least two distinct vectors. Now, if xi4'2 C K(Qb1), 
then for any n1, n2 C 7, 

+1 (riil ? m2X'/) = nibi (X1) + n2l(2) CZ 

so K(Qbi) is a lattice in Z2, which implies that K(QV) = K(QVi) + xo is a lattice in 
Z2. Since +/' is a 1-1, linear map, it follows that b (KQ(/)) = f/1 (K(+1))? + 

- is also 
a lattice in Z2. 

(b) Let L {B[lni] + X-} and LI' 
C n 

+ yo}, where the columns of 

B = [b1 b2] and C = [cI c2] are the respective lattice bases. Clearly B-1 exists 
and has rational entries. Let A = CB-1 C GL(2, Q). Set zo = o - Ax0 C Q2 and 
let +(x) = A x + zo. Then for each lattice point in Ij, we have 

/ jB [T= B ] + x) =A(B[fl] ?xo) ?+ C[7] +?o YCo 

Since det A #4 0, +/ is 1-1, which proves (b). E 

Remarks. 1. A simple example in which K(+b) 0 is the map with A = I and 

b = I 1 

2. We have phrased Theorem 1 to be used in only the two-dimensional case and 
only where +/ is 1-1. It is clear that more general versions of this theorem hold for 
n-dimensional lattices or when +/ is not necessarily 1-1. It is worth noting that even 
when +/: R n - Rn is not 1-1, a nonempty K(fb) will nonetheless have dimension 
n. 
3. When an affine map is given, such as 

([ m([c d] [a ] ? [ 

where the small letters are integers and m > 0 is the least common denominator 
of the component fractions, we can find bases for the lattices L and L' (see [4]) by 
solving the system 

(4.1) [c d] [d ] [] (mod m). 

The result in the following example, which illustrates Remark 3, will be needed 
later in the paper. 

Example. Let m be a positive integer. Find all integer points [x] so that 

-[i ] miJ [j ]lies in 2* As in linear algebra, this homogeneous sys- 
m h p-1 syn 

tem has the particular solution 0o To find all solutions, reduce the coefficient 
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matrix to echelon form, working modulo m: 

Fm-1 1-2ml 1 -11 1 -1 
L1 m -12 y-1 12 yL? 0 

We thus get the single congruence x y (mod m), or equivalently, x y + tm. 
Setting n1 = y and n2 t, we obtain the general solution 

(4.2) [] i[] + [;] 

5. THE GLOBAL MAPS 

The quadratic polynomials that are the exponents in an irreducible, balanced 
T2 equation form an interesting, close-knit family in that the pair of coefficients of 
their quadratic terms is the same throughout the family ("balanced" quadratics) 
and the collection of integer values (with repeats) of the quadratics on the left side 
of the identity - produced by letting the pair of variables in each quadratic range 
over Z2 is the same as the collection of values produced in the same way on 
the right. It seems reasonable under these circumstances to suspect that any two 
quadratics in such a family might well be connected by an affine map. The next 
theorem gives necessary and sufficient conditions that specify the form of such an 
affine map. 

Theorem 2 (Global Mapping Theorem). Let L(x, y) = klx2 + k2y2 +11x+12y+ae 
and R(x,y) = klx2 + k2y2 + 11x + l'y + a' be in R[x, y], where kl,k2 > 0 and 

k2 = kI1. If A c[a ] is a real matrix and [fj is a real vector, then the vector 

equation 

(5.1) L([ ])=R(A[ ]+[e]) 

holds if and only if the following six conditions are satisfied: 

(5.2) detA=c, where c ?1, 

(5.3) d =ca, 

(5.4) b= -kc, 

(5.5) a2+ kc2 1, 

(5.6) =A 12 l/ + (l)- 

L2k2 - 2k2 

4 [ ki k2 ] 

Proof. () We have from (5.1) that 

klx2 + k2y2 + IIx + 12Y + a = ki(ax + by + e)2 + k2(CX + dy + f)2 

+ l(ax + by + e) + l/(cx + dy + f) + a'. 

Equating coefficients of corresponding powers of x and y and canceling common 
factors gives 

(5.8) a2 + kc2 = 1, 
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(5.9) b2 + kd2 = k, 

(5.10) ab + kcd = 0, 

(5.11) 11 = 2k1ae + 2k2cf + l'a + lc, 

and 

(5.12) 12= 2k1be + 2k2df +l1b+1ld. 

If ~~~~~~~~~2 1 If a 0, then (5.8) - (5.10) give c =, d = 0, and b2 = k. These values 

satisfy (5.2) - (5.5). 
Next assume that a 7& 0. 

(5.2): Substituting (5.8) - (5.10) in the familiar identity (a2 + kc2)(b2 + kd2) 
(ab + kcd)2 + k(ad - bc)2 gives k = 02 + k(ad - bc)2 =zz- det A = E 
(5.3): Rewriting (5.8) and (5.9) as 

{(a2 - 1) +c2k = 0O 

tb2 + (d 2-l1)k = O1 
we find that 

a2- c 2 
b2 d2 _ 1 

= ? 

Thus, 

a2 + d2 - 1 = a2d2 - b2c2 (ad - bc)(ad + bc) = E(ad + bc). 

Adding 1 = E(ad - bc) in (5.2) gives d2 + a2 = 2Ead, so (d -Ea)2 = 0, i.e. d =,Ea. 
(5.4): Substituting (5.3) into (5.10) gives ab+Ekac 0. Since a 74 0, then b =-Ekc. 
(5.5): This is equation (5.8). 

___ Flu~~~~~~~~~1 [a kcl[el+a cl 
(5.6): Combine equations (5.11) and (5.12) as = 2k [b kd + 

Multiplying by [a blk] gives 

A - 11 [a b/k 11li 2k [a b/kl a kcl el F a b/kl a cd 11 
l2/k C d/k I 1 [c d/k b kd f +c d/k b d 1/ 

2k, If + [o llk] [12] 

using (5.3) - (5.5). This implies (5.6). 
(5.7): Putting 

_12 

[ 2k2-__ 

into (5.1) and using (5.6) gives 

L 2k, [/ j 2k + [)R I 2k/1] L 
1 RA 

12I I 
/ 

L kXL 2k21I L12k2 /j 
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It follows from the definitions of L and R in Theorem 2 that 

k14k +k2 +i + 11 122k + a=ki (4)2 + k2 (1)2 + 1 ? + 12 2k + a 
4k 4k~' 2k, 2k2 4k ~ 4k +l2k, l,1 

which implies (5.7). 

(~=) Let a and c be any real solutions of (5.5) and set A a -[,kc where 

c E {-1, 1}. Suppose that [Ej is given by (5.6) and that (5.7) holds. A routine 

calculation shows that (5.1) is satisfied. DH 

Note that (5.7) can be rewritten as 

(5.13) ki 12 + k2l12 - 4k1k2a = ki(1)2 + k2(1 )2 - 4k1k2a'C. 

This suggests the following definition. 

Definition 3. Let f (x, y) = kix2 + k2y2 ? 11 x + 12Y +a. Then define the invariant 
I of f to be, 

(5.14) I(f) = k112 + k2l12 - 4k1k2aC 

Equation (5.13) asserts that I(L) = I(R). 
It is worth noting that two quadratic polynomials f (x, y) and g(x, y) are affinely 

related as in (5.1) if and only if I(f) = I(g). To see this, observe that (5.1) =# 
(5.7) (5.13) I (f) = I(g). On the other hand, I(f) = I(g) - (5.7). We 
can take A = I and use (5.6) to define e and f, which then implies that (5.1) holds. 

That such an invariant appears here and takes the form it does is not surprising. 
Write f (x, y) in homogeneous form: 

(5.15) f(X Y, z) = z2f( ) klx2 + k2y2 + az2 + 11XZ + 12yz 

In general, if 

x 

f (x y, Z) - alix2 + a22Y2 + a33z2 + a12xy + a13XZ + a23YZ = [x y z] A Y 

where 
al 12 a131 

- a 
12 2 2 

A = a a22 a23' 
a13 a23 a3 2 2 a33 

then it is well-known that det A is an invariant. In fact, it is the only fundamental 
algebraic invariant [3, p. 15]. When f(x, y, z) f(x, y, z) in (5.15), determinant A 
becomes 

ki 0 12i12 1 
(5.16) 0 k2 2 = oakik2- k2 - k 12 _ - (f) 

1 12 4 4 41(f). 
2 2 a 

Note that 1(f) = 10752 for all the quadratics f in the four identities in Table 2, if 
the powers of x are not canceled. 
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Remarks. 1. Observe that k is not required to be an integer in Theorem 2. 
2. We have shown in Theorem 2 that if the quadratic exponents are linked by 

affine maps as in (5.1), ther certain conditions must hold. A basic question remains, 
however, which we put as an (unproved) conjecture: 

Conjecture. Any pair of quadratic exponents in an irreducible, balanced T2 iden- 
tity is connected by a global map. 

6. CONNECTING GLOBAL MAPS WITH LATTICES 

Our goal in this section is to find lattices L and L' for L(x, y) and R(x, y) in 
Theorem 2 such that to each lattice point (i, j) c L there corresponds exactly one 
lattice point (i',j') c L' such that L(i,j) = R(i',j'). In other words, we wish to 
find basis vectors b1, b2, c-1, c-2 and displacement vectors d and 9' such that 

L(nibi + n2b2 + 9) R(nrc', + n2C2 +?.'), V nr,rn2 C ZZ 

(It is convenient to use the same coordinates (nr, rn2) for the two lattices.) To find 

the desired vectors, we employ the matrix A [ ckc with rational entries. ca 

Now set a -and c = , where m is the least common denominator of a and c. 
m m 

Then, 

(6.1) A m-A m -ck6s1 
m m[~ 'E8 

where the integers 6 and -y satisfy 62 + k-y2 iM2. 

Next consider the affine map with rational coefficients b ( [ ]) A [x] + [f] 

where e and f are computed in (5.6). By Theorem 1, +/ maps a lattice L onto a 

lattice L' if and only if there is a single point [hj EC Z C2 such that 

(6.2) = (h A [ + 

While A has entries with common denominator m, (5.6) shows that e and f have 
denominators 2k1 and 2k2 respectively. In order for (6.2) to hold, the rationals e 
and f must each reduce to a fraction with denominator m. 

We make two observations. The first is that k = 7 divides every 12 and l2 
in Table 2. We will assume from now on that k divides 12 and l/ and we write 
12 = k12 and l/ = kll. The second observation is that T(k,-I) = T(k, 1), so we 
can arbitrarily change the signs of 11, 12, 1, and 1, if we choose. Thus, to try to 
make (6.2) hold, we must find El, 62, , El C {-1, 1}, so that 

(6.3) A [cil 1^2]m ['1'l1 (mod 2k1). 

When this condition is satisfied, we can write 
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where e, f C 2* Our rational map f/ is now 

We can next examine the system mod m as in (4.1) to see if we obtain a solution 

of (6.2). When we do, we can find an integral matrix B and a vector [hj E V2 

such that +b(B [n] + [h]) EE Z, for each [ni] E Z2 Thus, both the matrix 

C = [cij] = AB and the vector [h] in (6.2) have integer entries. This produces 

the two desired lattices, using the columns of the matrices B and C as the basis 
vectors: 

(6.5) L: [j2] ==rl[bii] +n2 b22] + [h] 
and 

(6.6) [ n]i1 [C2 2 [C22 J hl 

so we have 

L( [b2] +n2[b22] 
+ [hi) =R(rn[iC] +n2 [C2] + h 

Before we prove the main theorem (Theorem 3), which deals with identities 
having the re-arrangement pattern of the identities in Table 2, we will construct a 
particular global map, related to Identity 1, by choosing a specific solution to (6.2). 
This will be used in Section 8 where we prove the four identities in Table 2. 

When k is an odd integer, we take m = 2'6 = = m-11"Y = 1, 

and c = 1. For these values, 62 +-y2 =iM2 so the matrix A given in (6.1) is a global 
map. By (4.2), the homogeneous system 

A[] [ i2-1] [S] [0] (mod m) 

has the general solution [v] = r1 [] + n2 [ Thus, we have 

(6.7) B [ = ] and C=AB== [ rn-i] 

The next lemma gives a simple test for determining whether the affine map 

A [x] + [v] maps a point in Z2 to a point in Z2. 

Lemma 1. Given two balanced quadratic polynomials L(x, y) = kix2 + k2y2 ?l1x? 
kl2y + a and R(x,y) = klx2 + k2y2 + lIx + klly + a/, where k1, k2 C + and 

k= k= is an odd integer. Let A=-[ 1 1 ] where m = 2 Assume 

for some choice of signs 61, 62, 4, cy C {i,-i} that 

(6.8) [1 m71 ii [i [ e' 1] (mod 2ki). 
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Then for e, f defi;ned in (6.4), [h] = [7je] is a vector in 22 such that A [g] + 

- [El1 [cij 
Proof. To simplify notation, write [ 21 and Multiplying (6.8) 

by [ we have that 

[m - 1 1- 2m] [ ] m 1 1 - 2m ]_( d2km) 

which is condition (6.3). This implies by (6.4) that 

(6.9) e=- and f f= I m m 

where e, f C Z. 

We now turn our attention to finding a vector [h] so that A [g] + [e] is an 
integer. Since all the fractions of this affine map have denominator m, this means 
we must solve the congruence 

(6.10) h(mod n). 

The augmented matrix for this system reduces (mod m) as follows: 

(m-1 1-2m -el [m-1 1-2m -e 
(6.11) L 1 m-1 1-f j m -m |-e- f 

(6-11)~~1 1 

0[ m e+fM 
Thus, the second congruence drops out if and only if 'e+ f _ 0 (mod m). Since by 
(6.4) and (6.9), 

[] 2k, 2k, 1 m 1 ] [ m]) 

then on adding the first row to the second row, we see the second row is 

e + f = 2k m -m]l - [Tm Tn]P ) 2 [1 -1]1 - [1 11 

By the condition in the first row of (6.8), 2k1 divides [1 -1]1- [1 1]1', so 0e+ f _ 
(mod m), and the system (6.10) is consistent. The first congruence in the reduced 
augmented matrix in (6.11) is 

[1 -1] [g] e (mod m), 

which clearly has the particular solution [E] = [l] = [m]. 

In determining how various lattices fit together, the following lemma is useful. 
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Lemma 2. Assume the hypothesis of Lemma 1. Let ['M M2 ] c Z2 be such that 

A K]+[fj and [721 = A K]+[f] are, n Z2 Then +n/_m2+n/ 

(mod m). 

Proof. Subtracting the two vector equations gives 

ml ,2 E = A ml- m2 = -1 1- 2ml ml -m2l 

n - n/ ni -n2 -m L m- Lni-n2 

Multiplying this equation by the elementary matrix [1 0] and equating the second 

components gives 

m/m/1 / l- M 
l-2 ? r'-2 -[im -m] m 1-n2 = m-m2-(n(-n2), 

so 

(6.12) (ml + n) - (m/ + nr) = (ml - ni) - (m2 - n2). 

On the other hand, in the first equation, since by hypothesis and (6.9) 

Anl [m] m [ 1 1m-1 [ml] + 1 [e E 
V 

we have that the first component is an integer, which is to say (m - 1)mi + 
(1 - 2m)nl + e- 0 (mod m), or reducing, mi - ni e (mod mi). Using the 
second equation, we find in a similar way that m2- n2- (mod m). Subtracting, 
we obtain that (m1 - ni)- (M2- n2) 0 (mod m). Combining this with (6.12) 
completes the proof. F 

Theorem 3. Given: 

(a) k1, k2 C E+, where k k2 is an odd integer, 

1 m-1 1-2m k+1 
(b) A =- L m-J wherei- 2m' 
(c) Two families of quadratic polynomials in Z[x, y]: 

Lr(x,y) = klx2 +k2Y2 +1lrx+kl2rY+ar, 1 < r < m, 

and 

Rs (x, y) = kx2 + k2y2 + lsx kl2y? , 1< sa< . 

Assume the following three conditions are satisfied: 
I. Invariant Condition. 

(6.13) I(Lr) = I(Rs) 1 < r s < m; 

II. Lattice Condition. For some choice of 6lr, 62r, I1/ /2s C {-1, 1}, 

(6.14) in1]j [:e2r2] [O m] [et{ ] (mod 2k,), 1<r,sKin 

and 
III. Synthesis Condition. For the same choice of ci's as in Condition II, and 

rs s r si < the sets 

(6.15) {mer hmerm} and + h 
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are complete residue systems modulo m, where 

(6.16) [f:1 =k1 (A [:irlj - [Etslis]) 

and 

(6.17) [h'] A [ ] + [fr:] 

Then 
m m 

(6.18) E , T(klir)T(k2, kl2r) =E xcT(kl,lls)T(k2 , kll8). 
r=l s=l 

Proof. Using Theorem 2, we first show that s ( [x]) A [x] + [7] is a global 

map such that L, ([x]) Rs (? (o[r ] )) for the matrix A in (b) and the vec- 

tor e'rs in (6.16). That conditions (5.2) - (5.5) hold follows readily from ex- 

amining A in (b). Condition (5.6) is (6.16), with the factor k = k2/k1 can- 
celed, and condition (5.7) is equivalent to the invariant condition (6.13). Ac- 

cording to Lemma 1, condition II guarantees that [mes] =[rs] is a vector 

in Z2 such that g([jrs) is in Z2. By Theorem 1, the set of points 

{x C x2 (X) C 2} forms a lattice L,s whose image under lb,s is also a lattice 
L/S. We have worked out the general bases for the lattices 4,s and LI in (6.5) 

[bil b12 1 T_ im d FCII C12 1T_ - 
and (6.6), where B b21 b22J -1 0L and C C 22] C 
in (6.7), sO that 

(6.19) Lr( n[i] +2 + [crs]) =Rs(ni 1[] + n2 [1] + s 

To complete the proof we must show that for each r, the m lattices L..... C,m 
form a partition of the rth indexing plane on the left and for each s, the m lat- 
tices LI S ...,L,/ form a partition of the sth indexing plane on the right. Let 

H n{n, [lj + n2 [0]: ni,n2 Z Z} be the Z-module generated by the vectors 

[b2I = [1] and [b2] - [0] It is clear that each coset of H has the form 

H + [t] where the integers ti range over a complete residue system modulo m. 

Hence, [Z2: H] = m. Each lattice Lrs is the coset H + rs= H + [mers] 

The first synthesis condition (6.15) guarantees that the m cosets rI.... ,I'rm are 
distinct and hence form a partition of the rth indexing plane Z2. In the same way, 
we examine the lattices LI2 on the right. These are all cosets of the Z-module 

H' = {n [ ]i + n2 [ i1 ]: Z l }. As before, it is easy to see that 

[Z2 H'] m m. Since each lattice LI2 = IPrs(Lrs)I it follows from Lemma 2 that 
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for each [ in L, the sum x' + y' is congruent to gls + hls modulo m. Thus, 

the lattices L,.. ., I are all distinct, since the sum of the coordinates of their 
coset representatives gls + h1... 9g s + hl s are distinct (mod m) by the second 
synthesis condition (6.15). Thus, these m lattices partition the sth indexing plane 
Z2 on the right. 0 

Note. In Theorem 3, the invariant condition guarantees that the quadratic expo- 
nents Lr(x, y) and Rs(x, y) are affinely related by the function l,rs. Also, the lattice 
condition produces the 1-1 re-arrangement correspondence in (6.19), using the lat- 
tices Lrs and LIs derived from the global map 4'rs. Finally, the two synthesis 
conditions show that these lattices fit together exactly to fill out their planes. 

7. A GENERAL PARAMETRIC IDENTITY 

In Theorem 3, we have an effective means for proving the four identities in Table 
2. Rather than doing this directly, we will use Theorem 3 to prove a 3-parameter 
identity which contains each of the four identities as a special case. 

Theorem 4. Let kl, k2 E Z+ such that k = k2 > 3 is an odd integer. Let m - 

k+1 
and suppose m I 2k, . If e, f E 7Z such that e + f E Z, then 

22 
m m 

(7.1) Z xCn T(kI I ln) T(k2 , 12n)) = S xCn T(kl,I1/n) T(k2 , 12n), 
n=I n=I 

2k1 
where n = n2 + 2en, 

m 

ln =-2kn + e + f= k(=)n + e-f, 
(7.2) 1an2n = m - ad2k 

Proof. We will verify the hypotheses of Theorem 3. Part (a) is clearly satisfied. In 

part (b), we have A =- (2 1)]. The two quadratic families in part 

(c) of Theorem 3 are Lr and Rs. It is straightforward using (5.14) and the five 
formulas in (7.2) to verify that I(Lr) = I(Rs) = 2mk1 (ke2 + f2) for the m different 
Lr's and Rs's. This verifies the Invariant Condition. 

Trying various possibilities for the signs, we find that we must take 61r = 62r - 

6/ = 1 and e/ =-1 for 1 < r s < m. Inserting these values into (6.14), we find 
that 

[1 -1 iF2kle?f f (k+I) 1 
r1 n-1 2kr?e 2kIr + me + mf ] [1 1 L~m J- k 

_ [ k=f (k+1) _o2k, S + e 
[ 

f1 

T[2kIs?ie J f [0 mT[ 2k?ic sodeif J (mod 2ki). 

This verifies the lattice condition in Theorem 3. 
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TABLE 3 

r Ta k1 11 k2 12 s ' k1 1 k2 12 
1 17 24 11 168 105 1 17 24 18 168 98 
2 37 24 23 168 147 2 38 24 18 168 154 
3 7 24 13 168 63 3 7 24 6 168 70 
4 0 24 1 168 21 4 0 24 6 168 14 

It remains to verify the synthesis condition. An elaborate, but straightforward, 
calculation in 3(b) and (6.18) with much simplification, gives that 

[ersl 1 1 Tn-1 -(2Tm- 1)l r 2r+e+ f 

Lfr s 2k, Im L1 m- j 2k, r + e-2mf 
(2k m s+ e-f)1 IFS-r 

-L2k1s?e? 2f JJ mLr-sJ 
From this we calculate 

[hls m [ m- ][ 0 m T[ r - s] 0] 

Since mers = S - g s + hs, it is clear the synthesis condition (6.15) holds. This 
completes the proof. 0 

We return to the four identities in Table 2. Consider Identity 1, where k1 = 24, 

2 = 168, k = 7, and m = 4. The global matrix is A = 4 [1 3j] Theorem 4 

now specializes to 
4 

E x12n2+2enT(24, 12n + e + f) T(168,84n + 7e - f) 

(7.3) n=1 

E X12n2+2enT(24 12n + e - f) T(168,84n + 7e + f). 
n=1 

Putting (e, f) = (, 72) in (7.3) and reducing the T-functions as in [1, p. 780], we 
obtain Identity 1, with terms in Table 3 in an order different from that of Table 2. 

We can establish Identities 2-4 in Table 2 in a similar way by using the parameters 

(e,fJ) = ("I- 7), ( v 325), and (7, v) respectively. 
We conclude this work by mentioning that the special form of Theorem 3 re- 

lates to its use in deriving Theorem 4, which was designed to prove identities 
whose re-arrangement scheme is that of the identities in Table 2. There are other 
re-arrangement schemes for balanced quadratic identities that are much more com- 
plicated than the type we dealt with here. To prove these, however, will require a 
more general theorem. We will examine these matters in another paper. 
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